\bold{\mathrm{Basic}} \bold{\alpha\beta\gamma} \bold{\mathrm{AB\Gamma}} \bold{\sin\cos} \bold{\ge\div\rightarrow} \bold{\overline{x}\space\mathbb{C}\forall} \bold{\sum\space\int\space\product} \bold{\begin{pmatrix}\square&\square\\\square&\square\end{pmatrix}} \bold{H_{2}O} \square^{2} x^{\square} \sqrt{\square} \nthroot[\msquare]{\square} \frac{\msquare}{\msquare} \log_{\msquare} \pi \theta \infty \int \frac{d}{dx} \ge \le \cdot \div x^{\circ} \square \square f\\circ\g fx \ln e^{\square} \left\square\right^{'} \frac{\partial}{\partial x} \int_{\msquare}^{\msquare} \lim \sum \sin \cos \tan \cot \csc \sec \alpha \beta \gamma \delta \zeta \eta \theta \iota \kappa \lambda \mu \nu \xi \pi \rho \sigma \tau \upsilon \phi \chi \psi \omega A B \Gamma \Delta E Z H \Theta K \Lambda M N \Xi \Pi P \Sigma T \Upsilon \Phi X \Psi \Omega \sin \cos \tan \cot \sec \csc \sinh \cosh \tanh \coth \sech \arcsin \arccos \arctan \arccot \arcsec \arccsc \arcsinh \arccosh \arctanh \arccoth \arcsech \begin{cases}\square\\\square\end{cases} \begin{cases}\square\\\square\\\square\end{cases} = \ne \div \cdot \times \le \ge \square [\square] â–\\longdivision{â–} \times \twostack{â–}{â–} + \twostack{â–}{â–} - \twostack{â–}{â–} \square! x^{\circ} \rightarrow \lfloor\square\rfloor \lceil\square\rceil \overline{\square} \vec{\square} \in \forall \notin \exist \mathbb{R} \mathbb{C} \mathbb{N} \mathbb{Z} \emptyset \vee \wedge \neg \oplus \cap \cup \square^{c} \subset \subsete \superset \supersete \int \int\int \int\int\int \int_{\square}^{\square} \int_{\square}^{\square}\int_{\square}^{\square} \int_{\square}^{\square}\int_{\square}^{\square}\int_{\square}^{\square} \sum \prod \lim \lim _{x\to \infty } \lim _{x\to 0+} \lim _{x\to 0-} \frac{d}{dx} \frac{d^2}{dx^2} \left\square\right^{'} \left\square\right^{''} \frac{\partial}{\partial x} 2\times2 2\times3 3\times3 3\times2 4\times2 4\times3 4\times4 3\times4 2\times4 5\times5 1\times2 1\times3 1\times4 1\times5 1\times6 2\times1 3\times1 4\times1 5\times1 6\times1 7\times1 \mathrm{Radianas} \mathrm{Graus} \square! % \mathrm{limpar} \arcsin \sin \sqrt{\square} 7 8 9 \div \arccos \cos \ln 4 5 6 \times \arctan \tan \log 1 2 3 - \pi e x^{\square} 0 . \bold{=} + Inscreva-se para verificar sua resposta Fazer upgrade Faça login para salvar notas Iniciar sessão Mostrar passos Reta numérica Exemplos x^{2}-x-6=0 -x+3\gt 2x+1 reta\1,\2,\3,\1 fx=x^3 provar\\tan^2x-\sin^2x=\tan^2x\sin^2x \frac{d}{dx}\frac{3x+9}{2-x} \sin^2\theta' \sin120 \lim _{x\to 0}x\ln x \int e^x\cos xdx \int_{0}^{\pi}\sinxdx \sum_{n=0}^{\infty}\frac{3}{2^n} Mostrar mais Descrição Resolver problemas algébricos, trigonométricos e de cálculo passo a passo step-by-step integral sin^5x pt Postagens de blog relacionadas ao Symbolab Practice Makes Perfect Learning math takes practice, lots of practice. Just like running, it takes practice and dedication. If you want... Read More Digite um problema Salve no caderno! Iniciar sessão
Daftarintegral dari fungsi trigonometri Daftar integral trigonometri (antiderivatif: integral tak tentu) dari fungsi trigonometri. Untuk antiderivatif yang melibatkan baik fungsi eksponensial dan trigonometri, lihat Daftar integral dari fungsi eksponensial. = ∫ (3/8 + 1/2 cos 2x + 1/8 cos 4x) dx = 3/8 x + 1/4 sin 2x + 1/32 sin 4x + c. 5.
This integral is mostly about clever rewriting of your functions. As a rule of thumb, if the power is even, we use the double angle formula. The double angle formula says sin^2theta=1/21-cos2theta If we split up our integral like this, int\ sin^2x*sin^2x\ dx We can use the double angle formula twice int\ 1/21-cos2x*1/21-cos2x\ dx Both parts are the same, so we can just put it as a square int\ 1/21-cos2x^2\ dx Expanding, we get int\ 1/41-2cos2x+cos^22x\ dx We can then use the other double angle formula cos^2theta=1/21+cos2theta to rewrite the last term as follows 1/4int\ 1-2cos2x+1/21+cos4x\ dx= =1/4int\ 1\ dx-int\ 2cos2x\ dx+1/2int\ 1+cos4x\ dx= =1/4x-int\ 2cos2x\ dx+1/2x+int\ cos4x\ dx I will call the left integral in the parenthesis Integral 1, and the right on Integral 2. Integral 1 int\ 2cos2x\ dx Looking at the integral, we have the derivative of the inside, 2 outside of the function, and this should immediately ring a bell that you should use u-substitution. If we let u=2x, the derivative becomes 2, so we divide through by 2 to integrate with respect to u int\ cancel2cosu/cancel2\ du int\ cosu\ du=sinu=sin2x Integral 2 int\ cos4x\ dx It's not as obvious here, but we can also use u-substitution here. We can let u=4x, and the derivative will be 4 1/4int\ cosu\ dx=1/4sinu=1/4sin4x Completing the original integral Now that we know Integral 1 and Integral 2, we can plug them back into our original expression to get the final answer 1/4x-sin2x+1/2x+1/4sin4x+C= =1/4x-sin2x+1/2x+1/8sin4x+C= =1/4x-1/4sin2x+1/8x+1/32sin4x+C= =3/8x-1/4sin2x+1/32sin4x+C
3XGK. 4s20krorqp.pages.dev/4054s20krorqp.pages.dev/6554s20krorqp.pages.dev/654s20krorqp.pages.dev/4004s20krorqp.pages.dev/5134s20krorqp.pages.dev/9634s20krorqp.pages.dev/6074s20krorqp.pages.dev/8264s20krorqp.pages.dev/4584s20krorqp.pages.dev/1044s20krorqp.pages.dev/8994s20krorqp.pages.dev/5034s20krorqp.pages.dev/9914s20krorqp.pages.dev/9104s20krorqp.pages.dev/411
integral sin pangkat 5 x dx